Canevascini G, et al. Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile. Eur. J. Biochem. 198: 43-52, 1991. PubMed: 1645650
. . Ber. Schweiz. Bot. Ges. 90: 108-117, 1980.
Carrel FL, Canevascini G. Effect of beta-glucosidase inhibitors on synthesis of cellulase and beta-glucosidase in Sporotrichum (Chrysosporium) thermophile. Can. J. Microbiol. 37: 459-464, 1991.
Canevascini G, Meyer HP. beta-Glucosidase in the cellulolytic fungus Sporotrichum thermophile Apinis. Exp. Mycol. 3: 203-214, 1979.
Coudray MR, et al. Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile. Biochem. J. 203: 277-284, 1982. PubMed: 7103940
Meyer HP, Canevascini G. Separation and some properties of two intracellular beta-glucosidases of Sporotrichum (Chrysosporium) thermophile. Appl. Environ. Microbiol. 41: 924-931, 1981.
van den Brink JJ, et al. Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers 52: 197-207, 2012.
Tambor JH, et al. Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-beta-glucanases that efficiently hydrolyse cellulosic substrates. Appl. Microbiol. Biotechnol. 93: 203-214, 2012. PubMed: 21710260
Berka RM, et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29: 922-927, 2011. PubMed: 21964414
|